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Abstract. Based on extensive numerical and computer-graphical simulations, it is shown that fractional-
order chaotic systems can be stabilized by slightly perturbing the system state variables periodically. In this
chaos control scheme, the tunable parameters are chosen empirically. The effectiveness of this chaos control
method is demonstrated by fractional-order Lorenz, Chen and Rössler systems, where the underlying initial
value problems are numerically integrated by using the Grünwald–Letnikov method.

PACS. 05.45.Ac Low-dimensional chaos – 05.45.Gg Control of chaos, applications of chaos – 05.45.Pq
Numerical simulations of chaotic systems – 02.60.Cb Numerical simulation; solution of equations

1 Introduction

Extensive studies have been carried out for chaos control
in the last two decades [1–4]. The objective of control is
to suppress the chaotic dynamics of a system, so that the
system can be driven to some stable states such as a single
point or a periodic cycle.
In the study of chaos control, methods based on parameter
perturbations are common, motivated by the OGY algo-
rithm [5]. A somewhat less popular method is to apply
periodic perturbations on the system state variables [6,
7], primarily conceived for continuous- and discrete-time
chaotic systems but was lately extended to a class of dis-
continuous dynamical systems [8,9]. Even without rigor-
ous mathematical justification, the success of this method
has been well demonstrated by both numerical simulations
and experimental implementations.
Spurred by the recent research advances in the fractional-
order systems, some works on controlling fractional-order
systems have been reported. For example, frequency-domain
techniques based on Bode diagrams have been suggested,
so that one can obtain linear approximations of the frac-
tional integrator (see e.g. [10,11]), thereby chaos control
may be accomplished.
However, it is still a challenge to achieve chaos control in
fractional-order systems in general. In this paper, it is to
verify the possibility of applying periodic perturbations on
the system state variables in order to achieve the goal of

a email: danca@rist.ro

chaos control, and also to testify its effectiveness on some
typical chaotic systems.
To start, consider first a continuous-time autonomous chaotic
system modeled by the following ODE Initial Value Prob-
lem (IVP)

ẋ = f(x), x(0) = x0, t ∈ I = [0, T ], T > 0 , (1)

where f : Rn → Rn is a continuous function and x ∈
Rn. The discussions below assume that (1) is of three-
dimensional and chaotic, namely n = 3, for which many
chaotic systems have been reported. Next the system (1)
is solved numerically by using some integration method
with fixed step size h > 0, so it is possible to suppress
chaos by perturbing the state variables sporadically at
some fixed instants of time. To implement such a chaos
control scheme, at every δh time instant, with a positive
integer δ ∈ Z+, one changes the state variables by

x′ = x(1− γ), (2)

where γ is a relatively small real number (|γ| << 1). Com-
putationally, this means that x is perturbed when the
counted number of integration steps, n, is a multiple of
δ, namely n = mδ with m ∈ Z+.
The perturbation specified in (2) can be considered as a

proportional one since x′

x = (1−γ) is a constant. This type
of perturbation is referred to as Proportional Perturbation
(PP) method hereafter.
Another possible way to perform perturbations may apply
additive pulses: x = x+γ, studied for a class of discontin-
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uous systems in [9], which will not be considered in this
paper however.
For illustration, first consider an integer-order Chen sys-
tem

ẋ1 = a(x2 − x1),
ẋ2 = x1 (c− a)− x1x3 + cx2,
ẋ3 = x1x2 − bx3 .

When a = 35, b = 3 and c = 28, it generates a chaotic
attractor as shown in Figure 1 (a). It is found that, by
perturbing each state variable with γ = −0.005 in every
integration with step size h = 0.005 (δ = 1), one can
obtain a stable cycle, as plotted in Figure 1 (b).
Here, appropriate values of parameters δ and γ are found
only empirically. In [6,7], attempts have been made to find
some rules for the selection of δ and γ. Also, as a general
remark, special attention has to be paid for determining
γ so that the smoothness of the resultant trajectories will
not be seriously degraded and the underlying dynamics
can remain unchanged structurally.
Therefore, the objective here is to show numerically, with
the aid of computer-graphic simulations, that the PP method
can be effectively used to provide control for fractional-
order chaotic systems. In doing so, the existence of con-
tinuous regions for γ is shown, with some fixed values of
δ, where chaos control can be guaranteed to achieve.
The organization of the paper is as follows: In Section 2,
basic notions about numerical integration of a class of
fractional-order IVPs with the Grünwald–Letnikov method
are presented. In Section 3 the PP method is applied to
three well-known fractional-order chaotic systems, namely
the Lorenz, Chen and Rössler systems. Finally, conclusions
are drawn in Section 5.

2 Grünwald-Letnikov method for PP
algorithm implementation

To implement numerically the PP method we shall use the
Grünwald-Letnikov discretization. Generally, fractional-
order systems are modeled by the following system of frac-
tional differential equations

dq

dtq
x(t) = f(x(t)), t ∈ I, (3)

where f : Rn → Rn is a continuous function, x ∈ Rn, and
q = (q1, q2, ..., qn)

T with qi ∈ R represents the fractional
order.
As is well known, there are several definitions of fractional
derivatives, such as Riemann-Liouville fractional deriva-
tive, Caputo fractional derivative, and Grünwald-Letnikov
fractional derivative (see, for example, [12–18]). Knowing
that fractional derivatives of initial conditions are usually
undefined in practical cases, they are thus avoided here.
For this reason, Caputo derivative is preferred, since the
corresponding initial conditions can be specified in classi-
cal forms.

Based on the Caputo operator, (3) can be transformed
into the following IVP

CDq
∗x(t) = f(x(t)), x(k)(0) = x

(k)
0 , (4)

k = 0, 1, 2, ..., ⌈q⌉ − 1, t ∈ I ,

where ⌈·⌉ denotes the ceiling function that rounds up to
the nearest integer and CDq

∗ represents the Caputo oper-
ator of order q. As defined by Caputo in 1969 [12], one
has

CDq
∗y(t) =

1

Γ (⌈q⌉ − q)

∫ t

0

(t− τ)⌈q⌉−q−1Dqy(t)dτ ,

and Γ is the Euler’s Gamma function given by

Γ (z) =

∫ ∞

0

tz−1e−tdt, z ∈ C, ℜ(z) > 0.

For integer q, the definitions of Caputo derivative and
classical derivative are identical: CDq

∗y(t) =
dq

dtq y(t). Even
though some applications with q > 1 have been discussed
in recent years, most of the physical phenomena can be
modeled with q ∈ (0, 1). From a qualitatively point of
view, these two cases are different (see e.g. [19]). In this
paper, only the case of q ∈ (0, 1) is considered. Accord-
ingly, by taking into account of the Caputo derivative, the
initial condition can be transformed to be in the standard
form, i.e. x(0) = x0.
For q ∈ (0, 1), the IVP (4) becomes

CDq
∗x(t) = f(x(t)), x(0) = x0, t ∈ I . (5)

Similarly to the integer-order systems, the requirement for
the continuity of f ensures the existence of solutions (see
page 85 of Chap. 6 in [19] for more details).
There are several numerical methods that can be used
to solve the IVP (5), such as the multi-step predictor-
corrector Adams-Bashforth-Moulton scheme [20], the Grünwald-
Letnikov discretization, etc. Here, the Grünwald-Letnikov
discretization (based on finite differences) is adopted, be-
cause

1. it is simple, with excellent computational performance;
2. it can handle both commensurate and incommensurate

cases without any modification of the coding scheme.

The Caputo derivative can be approximated by the Grün-
wald-Letnikov derivative. Note that the definitions for both
Caputo and Grünwald-Letnikov derivatives are equivalent
only in the particular case of autonomous initial condi-
tions, x0 = 0 [18,13], denoted by GLCqy(t) [18] and

CDq
∗y(t) ≃GLDq

t y(t) := lim
h→0

1

hq

[ t
h ]∑

j=0

cqi y (t− jh) , t ∈ I ,

(6)
where the Grünwald-Letnikov coefficients cqi are given by

cqi = (−1)
i

(
q
i

)
, i = 0, 1, 2, ... .
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The binomial coefficients

(
q
i

)
can be calculated based on

the Gamma function, as(
q
i

)
=

q!

(q − i)!
=

Γ (q + 1)

Γ (i+ 1)Γ (q − i+ 1)
.

It is easy to see that cq0 = 1 and cqi can be obtained recur-
sively, via

cqi =

(
1− 1 + q

q

)
cqi−1 .

As a result, the Caputo derivative can be approximated
by

CDq
∗y(t) ≈

1

hq

[ t
h ]∑

j=0

cqi y (t− jh) , t ∈ I . (7)

Once the Caputo derivative approximation (7) is avail-
able, one can discretize the IVP (5) on some uniform grid
0 ≤ t0 < t1 < · · · < tN+1 = T with ti+1 − ti = h. Denote
n + 1 = [t/h] and consider xn be the numerical approxi-
mation of x(t) at t = tn. Then, the right-hand side of (5)
is approximated by f(xn). By combining (5) and (7), one
obtains the following discrete equation

1

hq

n+1∑
i=0

cqixn+1−i = f(xn) .

Hence, an explicit form of xn based on the Grünwald-
Letnikov method can be expressed as

xn+1 = f(xn)−
n+1∑
i=1

cqixn+1−i . (8)

The accuracy of (8) depends strongly on the number of
coefficients cqi being used and how accurately they are
calculated (for more details on the convergence, see e.g.
[21]).
Unlike the operators of integer orders, which imply a fi-
nite series, the operators of fractional orders such as the
Grünwald-Letnikov operator are non-local and can only
be determined by infinite series (see relation (6)). In other
words, the next state will depend not only on the current
state but also all the states in the past. On one hand, it is
useful to model some real systems. On the other hand,
it requires much more computational effort. Therefore,
a compromising scheme, called “short memory” principle
(or “fixed memory” principle) has been proposed. Instead
of integrating over the entire interval [0, t], it only consid-
ers a period of fixed time interval, [t−L, t] with L < t ≤ T
and some adequate choice of L (see [18,22]). By main-
taining relative small increment of errors, this can reduce
the computational complexity. For (8), the short memory
principle means to increase the lower index (i = 1) of the
sum with a value corresponding to L [23].

3 Chaos Control in Fractional-Order Systems
via PP Method

In this section, using a Matlab implementation of the
Grünwald-Letnikov method, it is shown numerically that
PP method can be applied to suppress chaos in fractional-
order systems. For this purpose, consider three represen-
tative chaotic systems:

– Fractional-order Lorenz system [24]

dq

dtq x1 = σ(x2 − x1),
dq

dtq x2 = x1 (r − x3)− x2,
dq

dtq x3 = x1x2 − bx3 ,

with q = 0.999, σ = 10, r = 28 and b = 8/3;
– Fractional-order Chen system [25]

dq

dtq x1 = a(x2 − x1),
dq

dtq x2 = x1 (c− a)− x1x3 + cx2,
dq

dtq x3 = x1x2 − bx3 ,

with q = 0.99, a = 35, b = 3 and c = 28;
– Fractional-order Rössler system [26]

dq

dtq x1 = −x2 − x1,
dq

dtq x2 = x1 + ax2,
dq

dtq x3 = b+ x3 (x1 − c) ,

with q = 0.999, a = b = 0.2 and c = 5.7.

A fractional value close to unity is taken for q. This is
because it presents the most prominent chaotic behavior
as to the integer case which has been well studied. In ad-
dition, it is known that chaos is relatively easier to be
suppressed if q becomes small. Therefore, a large q (closer
to 1) is used in order to verify the proposed approach.
The integration time interval is set to I = [0, 200] and,
unless specified, the step size is h = 0.005. In order to
emphasize the stable cycles, the transients were neglected.
Figures 2 (a)–(c) indicate all the possible control domains
in the space (γ, δ) for each of the above three chaotic sys-
tems, when the PP method is applied. Points C1(γ1, δ1),
C2(γ1, δ1) and C3(γ1, δ1) are the representative cases, and
the control effects are illustrated by Figures 3, 4 and 5,
respectively.
As shown in Figures 2 (a) and (b), a large set of choice for
(γ, δ) is possible. The domains look similar, except that δ
is larger for the Rössler system. It is noted that the largest
admissible value of γ is set to be 0.01, regardless of the
choice of δ. This is because, the smoothness of the resul-
tant trajectories will be seriously degraded if γ is above
this value, and “chattering” phenomena can be observed.
On the contrary, a very different result is obtained in the
Chen system. Only a small set of γ, [0.021, 0.023], with
δ = 1, can be obtained as shown in Figure 2 (c), for which
chaos is suppressed. Since a large value of γ is used, a
small h, here h = 0.002, is used in order to not affect the
smoothness of the trajectories.
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4 Discussion

In all the presented cases, the obtained control domains
in the space (γ, δ) are composed of at least one hori-
zontal segment, one for each δ. Each segment seems to
be continuous along the γ axis. Thus, for an adequately
chosen δ∗, one obtains a segment for chaos suppression,
MN (Fig. 2 (d)), governed by the values of γmin and
γmax, where γmin depends on δ∗, and γmax is specified
as shown in Figures 2 (a)–(c). Therefore, for some pair
(δ∗, γ∗) in MN, chaos can indeed be suppressed. If the
chaos can be suppressed for some pair (δ∗, γ∗) ∈ MN ,
then it can be suppressed for all pairs pair (δ∗, γ) ∈ MN
with γ ∈ (γ∗, γmax].
In the above examples, perturbations (2) with the same
fixed γ have been applied to all state variables. Next, the
approach is further generalized by applying the perturba-
tions only to one or two state variables, or to all state
variables with different γ and at different time instants
δh. Since only three-dimensional systems are considered,
δ = (δ1, δ2, δ3)

T and γ = (γ1, γ2, γ3)
T . Thus, (2) becomes

x′
i = xi (1− γi) at every δih moments with i = 1, 2, 3.

The unperturbed state variable(s) is marked by ∗ (as shown
in Figures 6 and 7).
Now, some typical cases are presented. Figure 6 depicts
the result when only the first state variable x1 is per-
turbed. Usingγ1 = 0.032 after every δ1h, with δ1 = 1, a
stable cycle could be found.
Similarly, considering the Rössler system, if perturbations
are applied only to the last two state variables at the same
time instants (δ2 = δ3 = 10) with the same γ2 = γ3 =
0.005, then a stable cycle can also be obtained, as shown
in Figure 7.
Chaos control can also be achieved when different γ and
different δ are used. Taking the Lorenz system for illus-
tration, the perturbed system rests at a stable point, as
shown in Figure 8 when δ = (3, 2, 1)T and γ = (0.0005,
0.001, 0.003)T .
Finally, consider the most general case for which all the
parameters, namely q, δ and γ, are non-commensurate and
the perturbations are applied to all state variables. Again,
taking the Lorenz system as an example, it can be verified
that chaos is suppressed as seen from Figure 9.
While chaos suppression was relatively easy to implement
via the PP method, anti-control of chaos seems to be less
attainable. In fact, some cases have been studied prelim-
inarily by considering a relative smaller value of q, say
q = 0.9. In this case, as compared to the one with larger
q (but still smaller than unity), it is relatively difficult to
obtain chaotic dynamics. This can be verified by having
fewer and smaller regions in the bifurcation diagram where
chaos is exhibited.
It is noticed that a few pairs of (γ, δ), as indicated by
A1,2,3 in Figure 2 (a), can achieve anti-control of chaos as
shown in Figures 10 and 11. The parameters used in the
Lorenz system for Figure 10 are: σ = 10, r = 10, b = 8/3
with δ = 1 and γ = −0.01, while those for Figure 11 are:
σ = 10, r = 220, b = 8/3 with δ = 1 and γ = −0.01.

Another interesting phenomenon observed is that a stable
point can be transformed into a stable cycle via the PP
method; for example, as shown in Figure 12, the fractional-
order Lorenz system with σ = 10, r = 10, b = 10, δ = 1
and γ = −0.02. Also, unlike chaos control where γ > 0,
one must use γ < 0 here for all cases in anti-control of
chaos tested thus far.

5 Conclusions

In this paper it has been shown via computer-graphic sim-
ulations that it is possible to suppress chaos in fractional-
order dynamical systems, modeled by Grünwald-Letnikov
derivative, when one or several state variables are per-
turbed proportionally. To achieve chaos control, each vari-
able can be periodically perturbed at the same or different
time instants by using the derived relation (2).
It is found that the set of all admissible values of γ for
chaos suppression consists of some horizontal segments in
the plane (γ, δ), one segment for each δ. For chaos sup-
pression, only positive values of γ are found to be useful,
while on the other hand, a negative value of γ may help
anti-control of chaos. Although the parameters γ and δ
are determined empirically, the proposed PP method is
effective and easy to implement numerically.
Conceptually, periodic perturbations decrease the state
variables in the case of chaos control (γ > 0). The global
energy of the system then arrives at a new level, which
forces the system to behave stably. Conversely, by peri-
odically increasing the variables for anti-control of chaos
(γ < 0), the global system energy increases and the system
loses its stability gradually.
A possible future investigation alone the same line would
be to try aperiodic perturbations. Moreover, applying the
technique to fractional-order discontinuous systems with
respect to the state variables with n ≥ 3, or to planar non-
autonomous systems with dry friction for example, could
also be of real interest.
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Fig. 1. PP method applied to the integer-order Chen system. δ = 1 and γ = −0.005.
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Fig. 2. Sketch for control parameters domains (δ, γ). (a) Lorenz; (b) Rössler; (c) Chen systems; (d) One control segment.
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Fig. 3. PP method applied to the Lorenz system with q = 0.999. (a) chaotic attractor; (b) stable cycle obtained with δ = 3
and γ = 0.005.

Fig. 4. PP method applied to the Chen system with q = 0.99. (a) chaotic attractor; (b) stable point obtained with δ = 1 and
γ = 0.021.
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Fig. 5. PP method applied to the Rössler system with q = 0.999. (a) chaotic attractor; (b) stable cycle obtained with δ = 50
and γ = 0.007.

Fig. 6. PP method applied only to x1 for the Chen system.
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Fig. 7. PP method applied to x2 and x3 (with x1 unperturbed) for the Rössler system.

Fig. 8. PP method applied to all variables with different steps δ and different perturbations γ for the Lorenz system.
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Fig. 9. PP method applied for Lorenz system to all variables with different steps δ and different perturbations γ for the Lorenz
system with an incommensurate fractional order.

Fig. 10. Lorenz system for (σ, r, b) = (10, 10, 8/3) and q = 0.99; (a) attractive point; (b) chaotic attractor obtained by PP
method with δ = 1 and γ = −0.02.
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Fig. 11. Lorenz system for (σ, r, b) = (10, 220, 8/3) and q = 0.99; (a) stable cycle (without PP method); (b) chaotic attractor
obtained by PP method with δ = 1 and γ = −0.01.

Fig. 12. Lorenz system for (σ, r, b) = (10, 10, 10) and q = 0.99; (a) attractive point (without PP method); (b) stable cycle
obtained by PP method with δ = 1 and γ = −0.02.


